REVIEW ARTICLE
Scaling Startups Smarter: A Conceptual Framework for Data-Driven Growth
 
More details
Hide details
1
Department of Organisation and Management Theory, Poznań University of Economics and Business, Poland
 
2
College of Management, Yuan Ze University, Taiwan
 
 
Submission date: 2025-01-09
 
 
Final revision date: 2025-02-19
 
 
Acceptance date: 2025-05-06
 
 
Online publication date: 2025-05-30
 
 
Publication date: 2025-06-03
 
 
Corresponding author
Klaudiusz Kalisty   

Department of Organisation and Management Theory, Poznań University of Economics and Business, Poland
 
 
Management 2025;(1):447-466
 
KEYWORDS
JEL CLASSIFICATION CODES
M13
O32
D83
C88
L26
 
TOPICS
ABSTRACT
Background and purpose: Adapting Smart Data analytics, a refined approach from Big Data, has great potential for a startup’s internal processes, market understanding and growth support. While the use of Big Data is well described for conventional companies, its description for startups remains fragmented. This knowledge gap highlights the need for a conceptual framework developed for the development stages and strategic needs of startups. The aim of the study is to develop a theoretical framework for the adaptation of Smart Data in startups and to formulate possible implementation strategies taking into account the development stages of the startup. Design/methodology/approach: The u sefulness of Smart D ata in t he context of startups will be assessed using a SWOT analysis based on scientific articles published after 2019 in Q1 and Q2 journals, according to Journal Citation Reports. Based on the SWOT results and using the associated TOWS tool, recommendations will be made for the implementation of this approach in startups. Findings: The key finding is that Smart Data implementation is most impactful during the growth and development phases, when adequate operational maturity and resources are available. Early-stage startups may face significant barriers such as resource constraints, data security risks and technical risks. Addressing these risks and adapting Smart Data provides the startup with improved market insight, streamlined processes and enhanced decisionmaking capabilities. Value and limitations: The study fills an existing gap in startup scaling theory by providing a detailed framework for Smart Data integration. It extends startup and Big Data theory by providing practical guidance for founders, and serves as a foundation for future empirical research. The study shows that a welltimed and strategically phased implementation of Smart Data can significantly increase a startup’s capabilities and potential.
ACKNOWLEDGEMENTS
Supported by funds granted by the Minister of Science of the Republic of Poland under the „Regional Initiative for Excellence” Programme for the implementation of the project “The Poznań University of Economics and Business for Economy 5.0: Regional Initiative – Global Effects (RIGE)”.
REFERENCES (76)
1.
Ahmed, S., Kjørstad, M., Muller, G., & Sundheim, O. (2023). Early validation of high-tech startups by using (big) data. International Journal of Innovation Management, 27(05), 2340010. https://doi.org/10.1142/S13639....
 
2.
Andrieu, G., & Peter Groh, A. (2021). Strategic exits in secondary venture capital markets. Journal of Business Venturing, 36(2), 105999. https://doi.org/10.1016/j.jbus....
 
3.
Anwar, M. J., Gill, A. Q., Hussain, F. K., & Imran, M. (2021). Secure big data ecosystem architecture: Challenges and solutions. EURASIP Journal on Wireless Communications and Networking, 2021(1), 130. https://doi.org/10.1186/s13638....
 
4.
Ardagna, C. A., Asal, R., Damiani, E., Ioini, N. E., Elahi, M., & Pahl, C. (2021). From Trustworthy Data to Trustworthy IoT: A Data Collection Methodology Based on Blockchain. ACM Transactions on Cyber-Physical Systems, 5(1), Article 11, 1-26. https://doi.org/10.1145/341868....
 
5.
Bagozi, A., Bianchini, D., De Antonellis, V., Garda, M., & Marini, A. (2019). A Relevance-based approach for Big Data Exploration. Future Generation Computer Systems, 101, 51–69. https://doi.org/10.1016/j.futu....
 
6.
Behl, A. (2020). Antecedents to firm performance and competitiveness using the lens of big data analytics: A cross-cultural study. Management Decision, 60(2), 368–398. https://doi.org/10.1108/MD-01-....
 
7.
Behl, A., Dutta, P., Lessmann, S., Dwivedi, Y. K., & Kar, S. (2019). A conceptual framework for the adoption of big data analytics by e-commerce startups: A case-based approach. Information Systems and E-Business Management, 17(2), 285–318. https://doi.org/10.1007/s10257....
 
8.
Blank, S. (2013). Why the lean start-up changes everything. Harvard Business Review, 91, 63–72.
 
9.
Bonini, S., & Capizzi, V. (2019). The role of venture capital in the emerging entrepreneurial finance ecosystem: Future threats and opportunities. Venture Capital, 21(2–3), 137–175. https://doi.org/10.1080/136910....
 
10.
Cabrera-Sánchez, J.-P., & Villarejo-Ramos, Á. F. (2020). Acceptance and use of big data techniques in services companies. Journal of Retailing and Consumer Services, 52, 101888. https://doi.org/10.1016/j.jret....
 
11.
Cavallo, A., Ghezzi, A., Dell’Era, C., & Pellizzoni, E. (2019). Fostering digital entrepreneurship from startup to scaleup: The role of venture capital funds and angel groups. Technological Forecasting and Social Change, 145, 24–35. https://doi.org/10.1016/j.tech....
 
12.
Chang, W. (2019). The joint effects of customer participation in various new product development stages. European Management Journal, 37(3), 259–268. https://doi.org/10.1016/j.emj.....
 
13.
Charles, V., Aparicio, J., & Zhu, J. (2021). Data science for better productivity. Journal of the Operational Research Society, 72(5), 971–974. https://doi.org/10.1080/016056....
 
14.
Chen, L.-W., Welbourne Eleazar, M. J., Lee, S.-H., & Islam, H. A. (2024). Overcoming the liability of patenting in early-stage ventures with market orientation. Industry and Innovation, 31(4), 501–524. https://doi.org/10.1080/136627....
 
15.
Deias, A., & Magrini, A. (2023). The Impact of Equity Funding Dynamics on Venture Success: An Empirical Analysis Based on Crunchbase Data. Economies, 11(1), Article 1. https://doi.org/10.3390/econom....
 
16.
Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., & Papadopoulos, T. (2019). Big Data and Predictive Analytics and Manufacturing Performance: Integrating Institutional Theory, Resource Based View and Big Data Culture. British Journal of Management, 30(2), 341–361. https://doi.org/10.1111/1467-8...
 
17.
Ebert, C., Heidrich, J., Martinez-Fernandez, S., & Trendowicz, A. (2019). Data Science: Technologies for Better Software. IEEE Software, 36(6), 66–72. IEEE Software. https://doi.org/10.1109/MS.201....
 
18.
Elia, G., Polimeno, G., Solazzo, G., & Passiante, G. (2020). A multi-dimension framework for value creation through big data. Industrial Marketing Management, 90, 508–522. https://doi.org/10.1016/j.indm....
 
19.
Elitzur, R., Gavious, I., & Milo, O. (2024). Diversity in National Culture and Financial Harvest Exit Strategy in New Technology Ventures. Entrepreneurship Theory and Practice, 48(3), 881–908. https://doi.org/10.1177/104225....
 
20.
Fayyad, U. M. (2022). The Secrets of Data Science Deployments. IEEE Intelligent Systems, 37(4), 30–34. IEEE Intelligent Systems. https://doi.org/10.1109/MIS.20....
 
21.
Fuertes-Callén, Y., Cuellar-Fernández, B., & Serrano-Cinca, C. (2022). Predicting startup survival using first years financial statements. Journal of Small Business Management, 60(6), 1314–1350. https://doi.org/10.1080/004727....
 
22.
George, B., Walker, R. M., & Monster, J. (2019). Does Strategic Planning Improve Organizational Performance? A Meta-Analysis. Public Administration Review, 79(6), 810–819. https://doi.org/10.1111/puar.1....
 
23.
Ghasemaghaei, M., & Calic, G. (2019). Can big data improve firm decision quality? The role of data quality and data diagnosticity. Decision Support Systems, 120, 38–49. https://doi.org/10.1016/j.dss.....
 
24.
Ghezzi, A., & Cavallo, A. (2020). Agile Business Model Innovation in Digital Entrepreneurship: Lean Startup Approaches. Journal of Business Research, 110, 519–537. https://doi.org/10.1016/j.jbus....
 
25.
Gowrishankar, V., Yesodha, K. R. K., Jagadeesan, A., & Yuvaraj, N. (2024). The smart optimization model for Predictive Analysis of Supply Chain using IoT. 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. https://doi.org/10.1109/ICCCNT....
 
26.
Grimaldi, D., Fernandez, V., & Carrasco, C. (2021). Exploring data conditions to improve business performance. Journal of the Operational Research Society, 72(5), 1087–1098. https://doi.org/10.1080/016056....
 
27.
Grossi, V., Giannotti, F., Pedreschi, D., Manghi, P., Pagano, P., & Assante, M. (2021). Data science: A game changer for science and innovation. International Journal of Data Science and Analytics, 11(4), 263–278. https://doi.org/10.1007/s41060....
 
28.
Gupta, R., & Arora, P. (2023). Determinants of exit options of venture capitalists: Evidence from India. Journal of Indian Business Research, 15(3), 403–430. https://doi.org/10.1108/JIBR-0....
 
29.
Gupta, S., Drave, V. A., Dwivedi, Y. K., Baabdullah, A. M., & Ismagilova, E. (2020). Achieving superior organizational performance via big data predictive analytics: A dynamic capability view. Industrial Marketing Management, 90, 581–592. https://doi.org/10.1016/j.indm....
 
30.
Hartmann, P. M., Zaki, M., Feldmann, N., & Neely, A. (2016). Capturing value from big data –a taxonomy of data-driven business models used by start-up firms. International Journal of Operations & Production Management, 36(10), 1382–1406. https://doi.org/10.1108/IJOPM-....
 
31.
Helms, M. M., & Nixon, J. (2010). Exploring SWOT analysis – where are we now? Journal of Strategy and Management, 3(3), 215–251. https://doi.org/10.1108/175542....
 
32.
Hsu, S.-F., Lee, Y.-I., Hsu, C.-T., & Hsu, C.-Y. (2023). Using No-code Platform to Accelerate Digital Transformation – The Study for Feasibility Analysis and Solution Development of Performance Visualization Cloud-computing Management System (PVCMS). Proceedings of the 2023 5th Asia Pacific Information Technology Conference, 23–32. https://doi.org/10.1145/358815....
 
33.
Hulsen, T., Jamuar, S. S., Moody, A. R., Karnes, J. H., Varga, O., Hedensted, S., Spreafico, R., Hafler, D. A., & McKinney, E. F. (2019). From Big Data to Precision Medicine. Frontiers in Medicine, 6. https://doi.org/10.3389/fmed.2....
 
34.
Ireta-Sanchez, J. M. (2023). From establishment to scaling up of an SME in the IT sector: Deliberate and emergent strategies as critical essentials for the sustainable business model. Journal of Entrepreneurship in Emerging Economies, 16(6), 1737–1797. https://doi.org/10.1108/JEEE-0....
 
35.
Jeong, J., Kim, J., Son, H., & Nam, D. (2020). The Role of Venture Capital Investment in Startups’ Sustainable Growth and Performance: Focusing on Absorptive Capacity and Venture Capitalists’ Reputation. Sustainability, 12(8), Article 8. https://doi.org/10.3390/su1208....
 
36.
Juma, I., & Silver, D. F. D. (2020). Harnessing the Power: The Importance of Big Data in Startups. Edith Cowan Journal of Information and Technology, 1(1), Article 1.
 
37.
Kantarcioglu, M., & Ferrari, E. (2019). Research Challenges at the Intersection of Big Data, Security and Privacy. Frontiers in Big Data, 2. https://doi.org/10.3389/fdata.....
 
38.
Karunakaran, S., Hemasundari, M., Suguna, R., & Thandauthapani, A. (2024). Integrating AI and ML for Dynamic Pricing Strategies: Innovations in Marketing Analytics and Revenue Management. 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), 1-6. https://doi.org/10.1109/ICPECT....
 
39.
Khan, A. W., Khan, M. U., Khan, J. A., Ahmad, A., Khan, K., Zamir, M., Kim, W., & Ijaz, M. (2021). Analyzing and Evaluating Critical Challenges and Practices for Software Vendor Organizations to Secure Big Data on Cloud Computing: An AHP-Based Systematic Approach. IEEE Access, 9, 107309–107332. https://doi.org/10.1109/ACCESS....
 
40.
Khan, U. U., Ali, Y., Garai-Fodor, M., & Csiszárik-Kocsir, Á. (2023). Application of Project Management Techniques for Timeline and Budgeting Estimates of Startups. Sustainability, 15(21), Article 21. https://doi.org/10.3390/su1521....
 
41.
Kobayashi, Y., Takayasu, H., Havlin, S., & Takayasu, M. (2019). Time evolution of companies towards a stable scaling curve obtained from flow diagrams in three-dimensional phase space. New Journal of Physics, 21(4). https://doi.org/10.1088/1367-2....
 
42.
Kobayashi, Y., Takayasu, H., Havlin, S., & Takayasu, M. (2021). Robust Characterization of Multidimensional Scaling Relations between Size Measures for Business Firms. Entropy, 23(2), Article 2. https://doi.org/10.3390/e23020....
 
43.
Koo, J., Kang, G., & Kim, Y.-G. (2020). Security and Privacy in Big Data Life Cycle: A Survey and Open Challenges. Sustainability, 12(24), Article 24. https://doi.org/10.3390/su1224....
 
44.
Lange, J., Rezepa, S., & Zatrochová, M. (2024). The Role of Business Angels in the Early-Stage Financing of Startups: A Systematic Literature Review. Administrative Sciences, 14(10), Article 10. https://doi.org/10.3390/admsci....
 
45.
Lee, S. (Ronnie), & Kim, J. D. (2024). When do startups scale? Large-scale evidence from job postings. Strategic Management Journal, 45(9), 1633–1669. https://doi.org/10.1002/smj.35....
 
46.
Li, S., Peng, G. C., & Xing, F. (2019). Barriers of embedding big data solutions in smart factories: Insights from SAP consultants. Industrial Management & Data Systems, 119(5), 1147–1164. https://doi.org/10.1108/IMDS-1....
 
47.
Li, T., Ren, W., Xiang, Y., Zheng, X., Zhu, T., Choo, K.-K. R., & Srivastava, G. (2021). FAPS: A fair, autonomous and privacy-preserving scheme for big data exchange based on oblivious transfer, Ether cheque and smart contracts. Information Sciences, 544, 469–484. https://doi.org/10.1016/j.ins.....
 
48.
Malyy, M., Tekic, Z., & Podladchikova, T. (2021). The value of big data for analyzing growth dynamics of technology-based new ventures. Technological Forecasting and Social Change, 169, 120794. https://doi.org/10.1016/j.tech....
 
49.
Martinez, I., Viles, E., & G. Olaizola, I. (2021). Data Science Methodologies: Current Challenges and Future Approaches. Big Data Research, 24, 100183. https://doi.org/10.1016/j.bdr.....
 
50.
Mikalef, P., & Krogstie, J. (2020). Examining the interplay between big data analytics and contextual factors in driving process innovation capabilities. European Journal of Information Systems, 29(3), 260–287. https://doi.org/10.1080/096008....
 
51.
Molner, S., Prabhu, J. C., & Yadav, M. S. (2019). Lost in a Universe of Markets: Toward a Theory of Market Scoping for Early-Stage Technologies. Journal of Marketing, 83(2), 37–61. https://doi.org/10.1177/002224....
 
52.
Mtau, T. T., & Rahul, N. A. (2024). Optimizing Business Performance through KPI Alignment: A Comprehensive Analysis of Key Performance Indicators and Strategic Objectives. American Journal of Industrial and Business Management, 14(1), Article 1. https://doi.org/10.4236/ajibm.....
 
53.
Munawar, H. S., Qayyum, S., Ullah, F., & Sepasgozar, S. (2020). Big Data and Its Applications in Smart Real Estate and the Disaster Management Life Cycle: A Systematic Analysis. Big Data and Cognitive Computing, 4(2), Article 2. https://doi.org/10.3390/bdcc40....
 
54.
Obschonka, M., & Audretsch, D. B. (2020). Artificial intelligence and big data in entrepreneurship: A new era has begun. Small Business Economics, 55(3), 529–539. https://doi.org/10.1007/s11187....
 
55.
Pentland, B., Recker, J., Ryan, J., & Wyner, G. (2020). Bringing Context Inside Process Research with Digital Trace Data. Journal of the Association for Information Systems, 21, 1214–1236. https://doi.org/10.17705/1jais....
 
56.
Pickton, D. W., & Wright, S. (1998). What’s swot in strategic analysis? Strategic Change, 7(2), 101–109. https://doi.org/10.1002/(SICI)...<101::AID-JSC332>3.0.CO;2-6
 
57.
Prüfer, J., & Prüfer, P. (2020). Data science for entrepreneurship research: Studying demand dynamics for entrepreneurial skills in the Netherlands. Small Business Economics, 55(3), 651–672. https://doi.org/10.1007/s11187....
 
58.
Rafiq, U., Pattyn, F., & Wang, X. (2024). Practitioner Views on Analytics for Software Startups: A Preliminary Guide Based on Gray Literature. In S. Hyrynsalmi, J. Münch, K. Smolander, & J. Melegati (Eds.), Software Business (pp. 315–323). Springer Nature Switzerland. https://doi.org/10.1007/978-3-....
 
59.
Renko, M., Yli-Renko, H., & Denoo, L. (2022). Sold, not bought: Market orientation and technology as drivers of acquisitions of private biotechnology ventures. Journal of Business Venturing, 37(1), 106022. https://doi.org/10.1016/j.jbus....
 
60.
Ries, E. (2011). The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. Crown.
 
61.
Ryu, S.-L., & Won, J. (2022). The Value Relevance of Operational Innovation: Insights from the Perspective of Firm Life Cycle. Sustainability, 14(4), Article 4. https://doi.org/10.3390/su1404....
 
62.
Saltz, J. S., & Krasteva, I. (2022). Current approaches for executing big data science projects—A systematic literature review. PeerJ Computer Science, 8, e862. https://doi.org/10.7717/peerj-....
 
63.
Sandhu, A. K. (2022). Big data with cloud computing: Discussions and challenges. Big Data Mining and Analytics, 5(1), 32–40. Big Data Mining and Analytics. https://doi.org/10.26599/BDMA.....
 
64.
Saura, J., Palacios-Marqués, D., & Ribeiro-Soriano, D. (2021). Digital marketing in SMEs via datadriven strategies: Reviewing the current state of research. Journal of Small Business Management, 61, 1–36. https://doi.org/10.1080/004727....
 
65.
Saura, J. R. (2021). Using Data Sciences in Digital Marketing: Framework, methods, and performance metrics. Journal of Innovation & Knowledge, 6(2), 92–102. https://doi.org/10.1016/j.jik.....
 
66.
Sedkaoui, S. (2018). How data analytics is changing entrepreneurial opportunities? International Journal of Innovation Science, 10(2), 274–294. https://doi.org/10.1108/IJIS-0....
 
67.
Seo, E., & Lee, E. (2025). Linking SMEs’ customer strategy to firm growth: The case of manufacturing suppliers in South Korea. Asia Pacific Journal of Marketing and Logistics, 37(3), 782-799. https://doi.org/10.1108/APJML-....
 
68.
Singh, S., & Hillemane, B. S. M. (2021). Sources of finance for tech startups over its lifecycle: What determines their approach of sources and its success? International Journal of Emerging Markets, 18(8), 1766–1787. https://doi.org/10.1108/IJOEM-....
 
69.
Steinhoff, L., Liu, J. (Sunny), Li, X., & Palmatier, R. W. (2023). Customer Engagement in International Markets. Journal of International Marketing, 31(1), 1–31. https://doi.org/10.1177/106903....
 
70.
Surbakti, F. P. S., Wang, W., Indulska, M., & Sadiq, S. (2020). Factors influencing effective use of big data: A research framework. Information & Management, 57(1), 103146. https://doi.org/10.1016/j.im.2....
 
71.
Velasco, L. C. P., Rentucan, M. X. D., Largo, J. J. M., & Racaza, N. A. M. (2024). A web-based market validation tool for the modified Startup Business Company Validation Methodology. Procedia Computer Science, 234, 937–945. https://doi.org/10.1016/j.proc....
 
72.
Venkatraman, S., Venkatraman, R., Venkatraman, S., & Venkatraman, R. (2019). Big data security challenges and strategies. AIMS Mathematics, 4(3), 860-879. https://doi.org/10.3934/math.2....
 
73.
Venugopal, B., & Yerramilli, V. (2022). Seed-Stage Success and Growth of Angel Co-investment Networks. The Review of Corporate Finance Studies, 11(1), 169–210. https://doi.org/10.1093/rcfs/c....
 
74.
Weihrich, H. (1982). The TOWS matrix—A tool for situational analysis. Long Range Planning, 15(2), 54–66. https://doi.org/10.1016/0024-6....
 
75.
Xu, J., Chen, X., Wen, L., & Zhang, J. (2023). Company scaling and its deviations: New indicators for enterprise evaluation and bankruptcy prediction. PLOS ONE, 18(10), e0287105. https://doi.org/10.1371/journa....
 
76.
Zeng, M. L. (2017). Smart Data for Digital Humanities. Journal of Data and Information Science, 2(1), 1–12. https://doi.org/10.1515/jdis-2....
 
eISSN:2299-193X
ISSN:1429-9321 (1997-2019)
Journals System - logo
Scroll to top